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Approximate equations are derived for small unsteady perturbations of a constant
sonic stream and of quiescent gas, These equations, unlike the equation used for
defining unstable transonic flows of gas, provide a correct definition of perturba-
tion propagation from a point source in all directions [1].

1, Let us consider potential flows of perfect gas. Such flows are defined by the equa-
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where @, z,y, z, ¢, V, a, P and p are, respectively, the dimensionless velocity po-
tential, Cartesian coordinates, time, velocity of gas, speed of sound, pressure and density
(related, respectively, to a,2ly, a,ty, &y, a,, P, and p,, where the asterisk denotes
parameters of the sonic stream u = ®, = a, and (I)y = 0).
Let us consider transonic flows of gas, for which it is possible to use the linear theory

D=z -+ '\’(Dl + ‘Y‘A(I)z + o (Dltt -+ 2cD1xi = (Dlyu -+ d)lzz (1. 2)
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However the linear theory has some shortcomings. The linear expansion (1.2) contains

various irregularity regions for which the order of the second term y2(@, is the same

as of the first y®,.
As an example, we present two such expansions for one-dimensional flows
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These expansions determine the flow in a channel induced by a piston whose motion in
a supersonic stream is defined by z = ¢ 4 yh, (¢) + ....as well as for small pertur-
bations in a quiescent gas ( [2], p. 247)

O =70 4 72Dy + ... ., q)l(x’t)_—_a(]/x_z!—i t+$)+
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for which in (1. 2) in solutions for @, and @; = a, (z) + B, (v) only functions depen~
dent on v are retained in the case of (1.3) (@, = B, is the departing wave), and on z
in the case of (1.4) (@, = «, is the oncoming wave), Functions a,and f, are deter-
mined by conditions at the piston.

Expansions (1. 3) and (1.4) become irregular for v ~ { and 2 ~ 1/y,and forz ~ 1
and v ~ 1/y, respectively. It can be readily shown that for considerable times £ ~ 1/y
in the neighborhood of shock waves, which in the first approximation coincide with the
characteristics, x = 2t -+ yz, (t) in the case of (1, 3) (propagation downstream in a
sonic flow) and z == vz, (¢} 4+ ... in the case of (1.4) (propagation upstream),

Note that by substituting in (1.3) and (1.4) the variables §,, E,, x = p&, + ¢&,,

v = IE, + mE; with gl &= pm , for the variables z and v it is possible to rewrite ex-
pansions (1, 3) and (1.4) in such form that their irregularity occurs for &, = & /%,
1§, + m& = 6, and &, = 5,/ v, pt, + gk, =0, , respectively (in particular for
considerable times t ~1/yand g ~1/y, m = —q ,orfor g, ~ 1 /9, 1 =
—p). In the above formulas y << 1; s and 0 ,are variables of order unity, and §,is
one of the variables §,or E,. This is taken into account in the selection and extension
of variables in the course of equation derivation for two- and three-dimensional pertur-
bations,

The anaysis of the flow in the irregularity regions of expansions (1. 3) and (1.4) neces-
sitates the introduction of the following expansions:

D =z + Y, (s, 02) + Y4ps (55, 03) + ... (1.5)

The equation for 4, and the general solution of these equations are readily obtained by
substituting (1. 5) into (1. 1). A uniformly suitable solution is then obtained by joining
1P, with the linear solution @ = o, (z) + B, (v) by the method of merging asympto-
tic expansions [2, 3], A typical form of equations for 1, is provided, for instance, by the
following equation obtained for §, = z = y'sand 9, = v = 2t — z:

—Pyev = (¢ + DP1Paw

2. Using the results obtained for one~dimensional flows, we obtain for two- and three-
dimensional perturbations such nonlinear equations that, in the case of one-dimensional
flow could be joined for @, = @, (z, t) with the solution of Eq. (1.2). One of such
equations is evidently the equation which in the one-dimensional case consists of terms

Pgn and YPeYer (taking into account the note on the form of variables for one-dimen-
sional expansions, we introduce here ¢ — dz + bt and ) = kz <4 nt) and contains
besides these terms with derivatives with respect to y and z. In the general case this
requirement yields thewexpansion (2.1)
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y =ehd7n° 7= hd Y SleL 1

where O and & are some constant positive parameters whose order of magnitude deter-
mines various regions of flow,and &%, 1°, y° and Z° are new variables of order unity,
Substituting (2. 1) into (1. 1) and using the condition of nontriviality of the equation for
¥y, we obtain that b = —2d or b = 0. For P, we have the equation

2 (bn + dn + bhpe, + (¢ + DE (b + Dbeder = Yoy + Ve (2.2
where the superscript ° at variables is omitted and the notation ¥, = 1 is used here
and henceforth,

Specifying the equation of the sonic surface (a2 = V?3) in the form

E=c¢e 2 E,‘(no,yo, 2°) (%)k’ g = 2 g (°) 1% 2°) (2.3)

k=0 k=0
for the determination of function & = &, (1°, °, 2°) in the first approximation we
obtain the equation ¥z (§,, 1, ¥, 2) = O.
Let us derive approximate conditions at the shock wave, which for the normal and
tangent velocity components at transition through the wave front are of the form

(U—-V)(U—V,*= :+1 U —V2y + g, Vo=V (29)

where U is the shock wave velocity along the normal to the wave front, V, and V-
are the gas velocity components normal to the wave front, and an asterisk superscript
denotes flow ahead of the shock wave. The speed of sound a* is determined by the
second of formulas (1, 1) with 0 — @*, Defining the shock wave in the form (2. 3)
and substituting (2. 1) and (2. 3) into (2.4) in the first approximation for & == &, (n°,

y°, z°) we obtain % 550 \2 ot \2
2(bn+d;zz+ bh) 5 +- (W) +(6_z) - (2.5)
S (b+d)(x+1) (P +¥e*), p=p*

where the superscript ° has been omitted.

Functions 4 and Y*and their derivatives in (2. 5) are taken for £ = E,. If $* =1,
then (2, 5) is the equation of characteristics for (2. 2).

Let us consider the problem of selecting constants k& and n (n = kx - nt). For this
we, first, determine the shape of the perturbation front originating at point z = y = 0
for ¢ = O in a uniform transonic stream Y* = @&. For simplicity we consider a plane
flow. We substitute p* = p = o§ into (2. 5) and obtain for the derived equation the
solution

— _ - _ (x4 Dap+doe 2.6
=0+ By, A= (2.6)
2B=bn+4dn+bks0
Passing to physical variables x, y, ¢ we obtain (2. 6) in the form
(dk — rk®a® + (dn + bk — 2rkn)zt + (bn — rn®)t* = By? (2.7
r=—§'—A

Let us, first,set in (2.7) d = n = 1 and b = &k = (. These variables were used un-
til now in investigations of the nonlinear transonic equation [1]. This leads to the known
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conclusion that the perturbation propagation is defined by parabola [1]

x:f(yvt):%('}(—{—i)—i-t _!__;_th—l

which means that the perturbation propagates downstream at infinite velocity, and in
addition ¢ = const is a characteristic for (2. 2) [1]. These two features represent a con-
siderable shortcoming of Egs. (2.2) and (2. 5) represented in terms of variables z, y, z,
t. It can be readily shown that then function x = f (y, ¢) is the first term of expansion
in terms of the small parameter § / ¢ of the function that determines the exact pertui-
bation boundary, which in this case is a circle.
We require the curve (2.7) to be a circle for @ = 0 , which is reasonabie, since for
= 0 or § /& = ( we have, in accordance with (2. 1), the exact solution of the exact
equation (1. 1) @ = zx. This requirement leads to the condition that n = —2% when
b = 0,and n = 0 if b = —2d. The equation of the line of perturbation originating
atpoint z = y = 0 for ¢ = 0 is of the form (z — )% 4 y% = #*, which is an ex-
panding circle carried downstream by the sonic flow,
If in (2.7) ® %= 0, we have an ellipse that differs slightly (by a quantity of order
0 / &) from that circle. For a three-dimensional flow the perturbation boundary is de-
fined by surface £ = An + By ' (3% + z2). I @ = 0, that surface is a sphere
(x — t)> -+ y® + 2> = {2 Thus it is necessary toset in(2.1) £ = dx, n = k (z —
2t) or = kxr, £ = d (r — 2¢). In that case ¢t = const is no longer a character-
istic, the latter being defined by x = const or x — 2¢ = const. Note that in the one-
dimensional nonlinear theory both these shortcomings are absent, hence it is possible to
use any variables.
Let us assume that in Eq. (2. 2) coefficients C = (x -+ 1)d? (b + d) and 2B =
on + dn -+ bk do not vanish. We pass in (2. 2) and (2. 5) to the new variables 0 =
n/(2B), ¥ = Cy, ¥* == Cd*. The solution that defines the flow in the parturbation
region (and satisfies the conditions of continuity of velocity components at transition
through the perturbation boundary) can be written as
Q 2 2 Q 2 y!
Y= Gt it @=Co
Finally, let us obtain approximate conditions at the inpenetrable surface. Specifying
the latter in the form A o \
y = go + 8% D) [, 7, 2°) (—2—) Y=o +(%)2 > (-2—) f, (2-8)
=0 k=0
where Yo, = const, and substituting (2. 1) and (2. 8) into the exact condition of impe-~
netrability o, — (I)xiy___ ® o _ oy
oz Z 9z ot
in the first approximation we obtain

(6 + d)ofo (E,m, 2) / 08 = ¥, (Yo, &, M, 2), b+ —d (2.9

where the superscript is omitted,

Similar results are valid for small perturbations in a quiescent gas, Seeking the solu-
tion of Egs. (1. 1) and (2. 4), expressed in terms of dimensionless variables (instead of
P, py and a, we use parameters P,, po and @y = V (% + 1)/ 2a, of the quies-
cent gas), in the form (2. 1) and (2. 3) and rejecting in (2. 1) the term 2z in the expression
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for D ,in the first approximation we obtain

b= kd, 2 (bn — dBben + (¢ + DbPYebes = by + ¥ (210)
20— db) B2+ (22)" + (B2)' = 5L b (b + 9, b=1*

For conditions at the shock front we use functions for § = §,. The condition of im-
penetrability at the surface (2.8) for y = y, (b == 0) is baf, / 0 = P, . By speci-
fying for the perturbation front originating in a quiescent gas (p; = y:* = 0) the form
of circle x% + y% == 2 (or of sphere z? + y® | 22 = {2), we find that n = K,
hence £ = d(z4-¢t)and M = k(zF¢).

Thus for deriving the nonlinear equations for small unstable two- and three-dimen-
sional perturbations of a sonic stream or in a quiescent gas it is necessary to use the char-
acteristic variables of the related linear equations of one-dimensional flows. Although
equations in terms of other variables can evidently be used, care must be taken to inter-
pret these correctly, In particular, they can be used for defining flows whose unsteadiness
becomes apparent only in the second approximation. Note that all solutions of the tran-
sonic equation in variables x and ¢ [1] can be rewritten for Egs. (2. 2) and (2. 10), by
reducing these beforehand to the form appearing in [1]. This applies also to transforma-
tions that do not alter the form of the transonic equation (e.g. of that appearing in [4])
as well as the form of conditions at the shock front (or at a characteristic). Finally, a
theorem of uniqueness, similar to that in [4] can be formulated for these equations.
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A generalization is given of the problem on the impression of a circular stamp
when the elastic stamp makes contact with an unbounded elastic layer. Appli-
cation of the Hankel integral transform in the region of the layer and the pro-
perties of generalized orthogonality of eigenfunctions in the region of the cir-
cular cylinder (stamp) permits reducing the problem to an infinite system of



